Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A plant gene up-regulated at rust infection sites.

Identifieur interne : 000854 ( Main/Exploration ); précédent : 000853; suivant : 000855

A plant gene up-regulated at rust infection sites.

Auteurs : Michael A. Ayliffe [Australie] ; James K. Roberts ; Heidi J. Mitchell ; Ren Zhang ; Gregory J. Lawrence ; Jeffrey G. Ellis ; Tony J. Pryor

Source :

RBID : pubmed:12011348

Descripteurs français

English descriptors

Abstract

Expression of the fis1 gene from flax (Linum usitatissimum) is induced by a compatible rust (Melampsora lini) infection. Infection of transgenic plants containing a beta-glucuronidase (GUS) reporter gene under the control of the fis1 promoter showed that induction is highly localized to those leaf mesophyll cells within and immediately surrounding rust infection sites. The level of induction reflects the extent of fungal growth. In a strong resistance reaction, such as the hypersensitive fleck mediated by the L6 resistance gene, there is very little fungal growth and a microscopic level of GUS expression. Partially resistant flax leaves show levels of GUS expression that were intermediate to the level observed in the fully susceptible infection. Sequence and deletion analysis using both transient Agrobacterium tumefaciens expression and stable transformation assays have shown that the rust-inducible fis1 promoter is contained within a 580-bp fragment. Homologs of fis1 were identified in expressed sequence tag databases of a range of plant species including dicots, monocots, and a gymnosperm. Homologous genes isolated from maize (Zea mays; mis1), barley (Hordeum vulgare; bis1), wheat (Triticum aestivum; wis1), and Arabidopsis encode proteins that are highly similar (76%-82%) to the FIS1 protein. The Arabidopsis homologue has been reported to encode a delta1-pyrroline-5-carboxylate dehydrogenase that is involved in the catabolism of proline to glutamate. RNA-blot analysis showed that mis1 in maize and the bis1 homolog in barley are both up-regulated by a compatible infection with the corresponding species-specific rust. The rust-induced genes homologous to fis1 are present in many plants. The promoters of these genes have potential roles for the engineering of synthetic rust resistance genes by targeting transgene expression to the sites of rust infection.

DOI: 10.1104/pp.010940
PubMed: 12011348
PubMed Central: PMC155881


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A plant gene up-regulated at rust infection sites.</title>
<author>
<name sortKey="Ayliffe, Michael A" sort="Ayliffe, Michael A" uniqKey="Ayliffe M" first="Michael A" last="Ayliffe">Michael A. Ayliffe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organization, Division of Plant Industry, Box 1600, Canberra, Australian Capital Territory 2601, Australia. michaela@pi.csiro.au</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Commonwealth Scientific and Industrial Research Organization, Division of Plant Industry, Box 1600, Canberra, Australian Capital Territory 2601</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Roberts, James K" sort="Roberts, James K" uniqKey="Roberts J" first="James K" last="Roberts">James K. Roberts</name>
</author>
<author>
<name sortKey="Mitchell, Heidi J" sort="Mitchell, Heidi J" uniqKey="Mitchell H" first="Heidi J" last="Mitchell">Heidi J. Mitchell</name>
</author>
<author>
<name sortKey="Zhang, Ren" sort="Zhang, Ren" uniqKey="Zhang R" first="Ren" last="Zhang">Ren Zhang</name>
</author>
<author>
<name sortKey="Lawrence, Gregory J" sort="Lawrence, Gregory J" uniqKey="Lawrence G" first="Gregory J" last="Lawrence">Gregory J. Lawrence</name>
</author>
<author>
<name sortKey="Ellis, Jeffrey G" sort="Ellis, Jeffrey G" uniqKey="Ellis J" first="Jeffrey G" last="Ellis">Jeffrey G. Ellis</name>
</author>
<author>
<name sortKey="Pryor, Tony J" sort="Pryor, Tony J" uniqKey="Pryor T" first="Tony J" last="Pryor">Tony J. Pryor</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:12011348</idno>
<idno type="pmid">12011348</idno>
<idno type="doi">10.1104/pp.010940</idno>
<idno type="pmc">PMC155881</idno>
<idno type="wicri:Area/Main/Corpus">000854</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000854</idno>
<idno type="wicri:Area/Main/Curation">000854</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000854</idno>
<idno type="wicri:Area/Main/Exploration">000854</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A plant gene up-regulated at rust infection sites.</title>
<author>
<name sortKey="Ayliffe, Michael A" sort="Ayliffe, Michael A" uniqKey="Ayliffe M" first="Michael A" last="Ayliffe">Michael A. Ayliffe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organization, Division of Plant Industry, Box 1600, Canberra, Australian Capital Territory 2601, Australia. michaela@pi.csiro.au</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Commonwealth Scientific and Industrial Research Organization, Division of Plant Industry, Box 1600, Canberra, Australian Capital Territory 2601</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Roberts, James K" sort="Roberts, James K" uniqKey="Roberts J" first="James K" last="Roberts">James K. Roberts</name>
</author>
<author>
<name sortKey="Mitchell, Heidi J" sort="Mitchell, Heidi J" uniqKey="Mitchell H" first="Heidi J" last="Mitchell">Heidi J. Mitchell</name>
</author>
<author>
<name sortKey="Zhang, Ren" sort="Zhang, Ren" uniqKey="Zhang R" first="Ren" last="Zhang">Ren Zhang</name>
</author>
<author>
<name sortKey="Lawrence, Gregory J" sort="Lawrence, Gregory J" uniqKey="Lawrence G" first="Gregory J" last="Lawrence">Gregory J. Lawrence</name>
</author>
<author>
<name sortKey="Ellis, Jeffrey G" sort="Ellis, Jeffrey G" uniqKey="Ellis J" first="Jeffrey G" last="Ellis">Jeffrey G. Ellis</name>
</author>
<author>
<name sortKey="Pryor, Tony J" sort="Pryor, Tony J" uniqKey="Pryor T" first="Tony J" last="Pryor">Tony J. Pryor</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>1-Pyrroline-5-Carboxylate Dehydrogenase (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Flax (genetics)</term>
<term>Flax (microbiology)</term>
<term>Fungi (growth & development)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Glucuronidase (genetics)</term>
<term>Glucuronidase (metabolism)</term>
<term>Hordeum (genetics)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oxidoreductases Acting on CH-NH Group Donors (genetics)</term>
<term>Oxidoreductases Acting on CH-NH Group Donors (metabolism)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (microbiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Proline (metabolism)</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>Recombinant Fusion Proteins (genetics)</term>
<term>Recombinant Fusion Proteins (metabolism)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Triticum (genetics)</term>
<term>Up-Regulation (MeSH)</term>
<term>Zea mays (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>1-Pyrroline-5-carboxylate dehydrogenase (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Champignons (croissance et développement)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Glucuronidase (génétique)</term>
<term>Glucuronidase (métabolisme)</term>
<term>Hordeum (génétique)</term>
<term>Lin (génétique)</term>
<term>Lin (microbiologie)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Oxidoreductases acting on CH-NH group donors (génétique)</term>
<term>Oxidoreductases acting on CH-NH group donors (métabolisme)</term>
<term>Proline (métabolisme)</term>
<term>Protéines de fusion recombinantes (génétique)</term>
<term>Protéines de fusion recombinantes (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régions promotrices (génétique) (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Régulation positive (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Triticum (génétique)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
<term>Zea mays (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glucuronidase</term>
<term>Oxidoreductases Acting on CH-NH Group Donors</term>
<term>Plant Proteins</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glucuronidase</term>
<term>Oxidoreductases Acting on CH-NH Group Donors</term>
<term>Plant Proteins</term>
<term>Proline</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>1-Pyrroline-5-Carboxylate Dehydrogenase</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Champignons</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Flax</term>
<term>Hordeum</term>
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Promoter Regions, Genetic</term>
<term>Triticum</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Feuilles de plante</term>
<term>Glucuronidase</term>
<term>Hordeum</term>
<term>Lin</term>
<term>Maladies des plantes</term>
<term>Oxidoreductases acting on CH-NH group donors</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines végétales</term>
<term>Régions promotrices (génétique)</term>
<term>Triticum</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Lin</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Flax</term>
<term>Plant Diseases</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glucuronidase</term>
<term>Oxidoreductases acting on CH-NH group donors</term>
<term>Proline</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Gene Expression Regulation, Plant</term>
<term>Molecular Sequence Data</term>
<term>Plants, Genetically Modified</term>
<term>Sequence Homology, Amino Acid</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>1-Pyrroline-5-carboxylate dehydrogenase</term>
<term>Données de séquences moléculaires</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Régulation positive</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Expression of the fis1 gene from flax (Linum usitatissimum) is induced by a compatible rust (Melampsora lini) infection. Infection of transgenic plants containing a beta-glucuronidase (GUS) reporter gene under the control of the fis1 promoter showed that induction is highly localized to those leaf mesophyll cells within and immediately surrounding rust infection sites. The level of induction reflects the extent of fungal growth. In a strong resistance reaction, such as the hypersensitive fleck mediated by the L6 resistance gene, there is very little fungal growth and a microscopic level of GUS expression. Partially resistant flax leaves show levels of GUS expression that were intermediate to the level observed in the fully susceptible infection. Sequence and deletion analysis using both transient Agrobacterium tumefaciens expression and stable transformation assays have shown that the rust-inducible fis1 promoter is contained within a 580-bp fragment. Homologs of fis1 were identified in expressed sequence tag databases of a range of plant species including dicots, monocots, and a gymnosperm. Homologous genes isolated from maize (Zea mays; mis1), barley (Hordeum vulgare; bis1), wheat (Triticum aestivum; wis1), and Arabidopsis encode proteins that are highly similar (76%-82%) to the FIS1 protein. The Arabidopsis homologue has been reported to encode a delta1-pyrroline-5-carboxylate dehydrogenase that is involved in the catabolism of proline to glutamate. RNA-blot analysis showed that mis1 in maize and the bis1 homolog in barley are both up-regulated by a compatible infection with the corresponding species-specific rust. The rust-induced genes homologous to fis1 are present in many plants. The promoters of these genes have potential roles for the engineering of synthetic rust resistance genes by targeting transgene expression to the sites of rust infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12011348</PMID>
<DateCompleted>
<Year>2002</Year>
<Month>08</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>129</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2002</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>A plant gene up-regulated at rust infection sites.</ArticleTitle>
<Pagination>
<MedlinePgn>169-80</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Expression of the fis1 gene from flax (Linum usitatissimum) is induced by a compatible rust (Melampsora lini) infection. Infection of transgenic plants containing a beta-glucuronidase (GUS) reporter gene under the control of the fis1 promoter showed that induction is highly localized to those leaf mesophyll cells within and immediately surrounding rust infection sites. The level of induction reflects the extent of fungal growth. In a strong resistance reaction, such as the hypersensitive fleck mediated by the L6 resistance gene, there is very little fungal growth and a microscopic level of GUS expression. Partially resistant flax leaves show levels of GUS expression that were intermediate to the level observed in the fully susceptible infection. Sequence and deletion analysis using both transient Agrobacterium tumefaciens expression and stable transformation assays have shown that the rust-inducible fis1 promoter is contained within a 580-bp fragment. Homologs of fis1 were identified in expressed sequence tag databases of a range of plant species including dicots, monocots, and a gymnosperm. Homologous genes isolated from maize (Zea mays; mis1), barley (Hordeum vulgare; bis1), wheat (Triticum aestivum; wis1), and Arabidopsis encode proteins that are highly similar (76%-82%) to the FIS1 protein. The Arabidopsis homologue has been reported to encode a delta1-pyrroline-5-carboxylate dehydrogenase that is involved in the catabolism of proline to glutamate. RNA-blot analysis showed that mis1 in maize and the bis1 homolog in barley are both up-regulated by a compatible infection with the corresponding species-specific rust. The rust-induced genes homologous to fis1 are present in many plants. The promoters of these genes have potential roles for the engineering of synthetic rust resistance genes by targeting transgene expression to the sites of rust infection.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ayliffe</LastName>
<ForeName>Michael A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Commonwealth Scientific and Industrial Research Organization, Division of Plant Industry, Box 1600, Canberra, Australian Capital Territory 2601, Australia. michaela@pi.csiro.au</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Roberts</LastName>
<ForeName>James K</ForeName>
<Initials>JK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mitchell</LastName>
<ForeName>Heidi J</ForeName>
<Initials>HJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Ren</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lawrence</LastName>
<ForeName>Gregory J</ForeName>
<Initials>GJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ellis</LastName>
<ForeName>Jeffrey G</ForeName>
<Initials>JG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pryor</LastName>
<ForeName>Tony J</ForeName>
<Initials>TJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9DLQ4CIU6V</RegistryNumber>
<NameOfSubstance UI="D011392">Proline</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.2.1.3</RegistryNumber>
<NameOfSubstance UI="C095387">FIS1 protein, Linum usitatissimum</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.2.1.88</RegistryNumber>
<NameOfSubstance UI="D050842">1-Pyrroline-5-Carboxylate Dehydrogenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.5.-</RegistryNumber>
<NameOfSubstance UI="D000587">Oxidoreductases Acting on CH-NH Group Donors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.31</RegistryNumber>
<NameOfSubstance UI="D005966">Glucuronidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D050842" MajorTopicYN="N">1-Pyrroline-5-Carboxylate Dehydrogenase</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019597" MajorTopicYN="N">Flax</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005966" MajorTopicYN="N">Glucuronidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001467" MajorTopicYN="N">Hordeum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000587" MajorTopicYN="N">Oxidoreductases Acting on CH-NH Group Donors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011392" MajorTopicYN="N">Proline</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12011348</ArticleId>
<ArticleId IdType="doi">10.1104/pp.010940</ArticleId>
<ArticleId IdType="pmc">PMC155881</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biochem. 1994;63:949-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7979258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Oct;4(4):659-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8252068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1993 Jun;22(3):475-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8329686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1994 Feb;24(4):651-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8155884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1987 May 15;163(1):16-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2441623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 May;10(4):427-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9150592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Jul;6(7):935-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8069105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jun;123(2):779-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10859207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Jul 21;300(4):1005-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10891285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2000 Mar 1;1(2):99-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20572957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 May;10(4):438-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9150593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1995 Jul;8(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7655501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Jan 14;263(5144):221-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17839183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13009-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11069295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1982 Jan;69(1):205-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Feb;7(2):183-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7756829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6546423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Aug;7(8):1195-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7549479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Apr;18(2):185-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10363370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Feb;17(3):287-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10097386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jul;23(2):205-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10929114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1993 Nov;5(11):1575-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8312740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Aug;27(4):345-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11532180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Apr;9(4):641-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9144966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Dec;81(24):8014-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6096873</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Ellis, Jeffrey G" sort="Ellis, Jeffrey G" uniqKey="Ellis J" first="Jeffrey G" last="Ellis">Jeffrey G. Ellis</name>
<name sortKey="Lawrence, Gregory J" sort="Lawrence, Gregory J" uniqKey="Lawrence G" first="Gregory J" last="Lawrence">Gregory J. Lawrence</name>
<name sortKey="Mitchell, Heidi J" sort="Mitchell, Heidi J" uniqKey="Mitchell H" first="Heidi J" last="Mitchell">Heidi J. Mitchell</name>
<name sortKey="Pryor, Tony J" sort="Pryor, Tony J" uniqKey="Pryor T" first="Tony J" last="Pryor">Tony J. Pryor</name>
<name sortKey="Roberts, James K" sort="Roberts, James K" uniqKey="Roberts J" first="James K" last="Roberts">James K. Roberts</name>
<name sortKey="Zhang, Ren" sort="Zhang, Ren" uniqKey="Zhang R" first="Ren" last="Zhang">Ren Zhang</name>
</noCountry>
<country name="Australie">
<noRegion>
<name sortKey="Ayliffe, Michael A" sort="Ayliffe, Michael A" uniqKey="Ayliffe M" first="Michael A" last="Ayliffe">Michael A. Ayliffe</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000854 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000854 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:12011348
   |texte=   A plant gene up-regulated at rust infection sites.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:12011348" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024